Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms.

نویسندگان

  • M Esclapez
  • N J Tillakaratne
  • D L Kaufman
  • A J Tobin
  • C R Houser
چکیده

Two isoforms of glutamic acid decarboxylase (GAD67 and GAD65) and their mRNAs were localized in the rat brain by immunohistochemistry and nonradioactive in situ hybridization methods with digoxigenin-labeled cRNA probes. In most brain regions, both GAD isoforms were present in neuronal cell bodies as well as axon terminals. A few populations of neurons, such as those in the reticular nucleus of the thalamus, exhibited similar cell body labeling for both GADs. However, in many brain regions, the cell bodies that were immunoreactive for GAD67 were often more numerous than those that were immunoreactive for GAD65. In contrast, the density (quantity) of GAD65-immunoreactive axon terminals was higher than that of GAD67-immunoreactive terminals. Strong parallels were observed between the intensity of immunohistochemical labeling of cell bodies and the levels of mRNA labeling for both GAD isoforms. Many groups of GAD-containing cell bodies were distinctly labeled for GAD67, and these same groups of neurons were heavily labeled for GAD67 mRNA. Such neurons included Purkinje cells of the cerebellar cortex, nonpyramidal cells in the cerebral cortex, and neurons of the reticular nucleus of the thalamus. Similar parallels in labeling were observed for GAD65 and its mRNA. Distinct cell body labeling for the protein and associated high levels of GAD65 mRNA were found in neurons of the reticular nucleus of the thalamus and periglomerular cells in the olfactory bulb. However, many cell bodies were not readily labeled for GAD65 with immunohistochemical methods. Such absence or weakness of cell body labeling for the protein was associated with low or moderate levels of GAD65 mRNA. Even though light cell body staining was frequently observed for GAD65 and its mRNA, strong axon terminal labeling for GAD65 was present. Thus, in the deep cerebellar nuclei to which the Purkinje cells of the cerebellar cortex project, strong terminal labeling was observed for both GAD isoforms even though only light cell body labeling of the Purkinje cells was obtained for GAD65 and its mRNA. The findings suggest that the two isoforms of GAD are present in most classes of GABA neurons but that they are not similarly distributed within the neurons. GAD67 is present in readily detectable amounts in many GAD-containing cell bodies whereas GAD65 is particularly prominent in many axon terminals. In addition, neurons that express either form of GAD mRNA also express the corresponding protein. Levels of labeling for the GAD mRNAs suggest that, under normal conditions, the synthesis of GAD65 is frequently lower than that of GAD67.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVESTIGATION ON ANTI-GLUTAMIC ACID DECARBOXYLASE ANTIBODIES IN TYPE I DIABE TES MELLITUS

Antibodies directed against the enzyme glutamic acid decarboxylase (GAD) are believed to be the main cause of destruction of pancreatic islet cells in type I (insulin dependent) diabetes mellitus. The enzyme was found both in the brain and pancreatic beta cells. Although similarities in identity of GAD in human and rat brain have been demonstrated, little is known about the interaction betw...

متن کامل

Significant Changes in the Activity of L-Glutamic Acid Decarboxylase of Mouse Hypothalamus After Peripheral Injection of Cholecystokinin-8 and Caerulein

The activity of one of the metabolizing enzymes of - aminobutyric acid, (GABA), was determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-8) and caerulein (CLN). The activity of this rate-limiting enzyme, L-glutamic acid decarboxylase, (GAD), did not change thirty minutes after peripheral injections of either CCK-8 or CLN in doses of 50g/kg body weight. Howeve...

متن کامل

T-cell Tolerance Following Bacterial Glutamic Acid Decarboxylase (GAD) Feeding in Streptozotocin-induced Diabetes

Background: Autoimmune type 1 diabetes mellitus is caused by T-cell mediated immune destruction of the insulin-producing β-cell in pancreatic islets of Langerhans. Specificity of the auto-antibodies and of the auto-reactive T-cells has been investigated, in which several auto-antigens were proposed. Objective: To determine whether glutamic acid decarboxylase (GAD) feeding would induce oral tol...

متن کامل

Glutamate decarboxylases in nonneural cells of rat testis and oviduct: differential expression of GAD65 and GAD67.

gamma-Aminobutyric acid (GABA) and its synthetic enzyme, glutamate decarboxylase (GAD), are not limited to the nervous system but are also found in nonneural tissues. The mammalian brain contains at least two forms of GAD (GAD67 and GAD65), which differ from each other in size, sequence, immunoreactivity, and their interaction with the cofactor pyridoxal 5'-phosphate (PLP). We used cDNAs and an...

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1994